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Abstract

This article discusses the high added-value of using frequent tri-dimensional radar ob-
servations of the atmosphere to capture the dynamics of rapidly evolving weather systems.
The novelty of our approach resides in its application to spaceborne radars, since none of
the existing spaceborne radars is capable of such frequent observations (within minutes).
Nonetheless, recent advances in small-satellite and radar technologies, such as the Radar in
Cubesat (RainCube) developed at the Jet Propulsion Laboratory, have paved the way for the
design of a convoy of spaceborne radars to perform the targeted measurements.

The joint use of the radar reflectivities Z and their time derivatives dtZ provides rich and
unique information about the dynamics of the atmosphere. As illustrated using NEXRAD
measurements of a blizzard coupled with an atmospheric river in California and of tropical
storms making landfall in Florida and Hawaii, maps of dtZ reveal latent horizontal features
about locations of sources and sinks of moisture. The robust relation between dtZ and the
rate of change of the condensed-water mass M is also confirmed using numerical-weather
simulations of the topical cyclone Isabel with a radiative-transfer code to simulate Ka-band
measurements of Z from space. The high resolution of these simulations in space and time
allows also to demonstrate that vertical dynamic variables such as fluxes of dry and moist
air in convection can be retrieved accurately from Z and dtZ using a Bayesian algorithm.

Lastly, we discuss some of the constraints involved in the design of a convoy of two
satellites, each embarking a mini nadir-pointing Ka-band Atmospheric Radar (miniKaAR).
Our simulations show that, with a convoy of two spacecraft separated by∼ 90 s, each with a
pointing accuracy of∼ 0.025◦ in rms error, a sensitivity of 17 dBZ and a precision of 1 dBZ,
the proposed mission will observe more than 70% of the tropical convection between 5 and
10 km of altitude and resolve the time variations of fluxes of convective air masses.

1 Introduction

Spaceborne profiling radars provide valuable tri-dimensional measurements of clouds and pre-
cipitation for which in-situ data are often challenging to obtain. From these global obser-
vations, researchers and operational forecasters are able to estimate meteorological quantities
such the mass of condensed water or the precipitation rate from the measured reflectivity fac-
tor Z, the mean characteristic size (e.g. mass-weighted mean diameter) of hydrometeors from
dual-wavelength ratios, or latent-heating profiles from the reflectivity and mean Doppler veloc-
ity [1, 5, 7, 9].

While the current fleet of spaceborne precipitation radars provides a good spatial coverage of
the atmosphere of the Earth, it does not allow to properly capture the time variation of cloud or
precipitation systems that have life cycles in the order of 30 minutes to a few hours [13]. While
a radar on a geostationary platform would fulfill the requirement of frequent temporal sampling,
such an instrument does not exist yet partly due to the difficulty of achieving a high spatial
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resolution from a geostationary orbit with an antenna of reasonable size. The existing low-
Earth orbiting satellites that carry radars such as CloudSat (16 days revisit time), the Tropical
Rainfall Measurement Mission (TRMM, 11–12 hours repeat time) or the core satellite of the
Global Precipitation Mission (GPM, 3 hour repeat time) are such that between two consecutive
passes of the instrument over a given region the cloud or storm of interest will have changed
significantly if not disappeared.

The use of frequent high-resolution observations of the atmosphere over a given region allows to
assess the dynamic evolution of the atmospheric state parameters by computing their derivatives.
These derivatives help quantify processes such as mass or heat fluxes, which are essential param-
eters of storms and tropical cyclones [7]. Hence, the computed derivatives would be particularly
relevant for their assimilation in numerical weather forecasting models [14].

The objective of this article is to illustrate the usefulness of derivatives of frequent high-resolution
radar reflectivity observations to characterize the atmosphere. The added value of the computed
derivatives will be shown by i) illustrating how the spatial patterns of these derivatives differ
from those of the initial radar reflectivity, ii) demonstrating the robustness of the correlation
between derivatives of the radar reflectivities and derivatives of the condensed water mass, and
iii) showing how these variables help estimate dynamic atmospheric parameters such as vertical
fluxes of dry or moist air.

To the best of the authors’ knowledge, such a use of radar observations is uncommon. Among
the rare applications is the work done in morphing where sequences of measurements are used
to rebuild the time evolution of the radar singal. This amounts to interpolating the measurements
in a spatially and physically meaningful way at a spatial and temporal resolution finer than the
one of the measured data [18, 24]. In our case, the objective is not to interpolate the data at a
finer resolution than available, but rather to exploit the information carried by the derivatives of
the radar data.

To this end, the article is structured around three parts. First, the added value of high-resolution
radar data sets is shown using ground-based measurements of reflectivity factors Z acquired
by the network of S-band (∼ 3 GHz) NEXRAD radars. Due to the “coarse” sampling rate of
NEXRAD (∼4 to 6 min in precipitation mode), the time derivatives dtZ computed by finite dif-
ferences account for the advection, which is estimated robustly using a digital-image correlation
technique [3]. Three extreme-weather NEXRAD data sets are considered, viz. i) the Northern
California super-storm of January 2008, which was coupled with an atmospheric river, ii) the
tropical cyclone Fay as it made landfall in Florida in August 2008, and iii) the tropical storm
Iselle, which made landfall on Big Island, Hawaii, in August 2014. These three examples reveal
patterns in the horizontal distributions of dtZ, which differ from those of the radar reflectivities
themselves and therefore call for a quantitative analysis of the derived products in terms of at-
mospheric variables particularly along the vertical dimension.
This is done in the second part of the article, where high-resolution cloud-resolving-model simu-
lations of a cyclogenesis are used. These Weather Research and Forecasting (WRF) simulations

4



are fed to a radiative-transfer code to obtain Ka-band (∼ 35 GHz) radar reflectivity data ob-
served by a spaceborne radar with a horizontal resolution similar to GPM’s Ka-band radar and a
very fine vertical resolution (the native WRF vertical resolution). Three different micro-physical
schemes are employed during these radiative transfer simulations, viz. Lin, WSM6 and an em-
pirical scheme devised by the authors. The analysis of these refined data allows to relate the
derivatives dtZ of the synthetic radar signatures to the rate of change of condensed-water mass
dtM , in a significantly more robust way than traditional single-frequency Z −M relationships.
Moreover, the fine vertical sampling of the simulated Z and dtZ allows to retrieve vertical dy-
namic variables such as transports of air masses in convective cores. The Bayesian-retrieval
algorithm that we propose yields accurate estimates of both dry and moist air mass fluxes in the
upper troposphere, which in turns informs on detrainment processes at those altitudes.
In light of these results, the third and last part of the article discussed some design criteria for the
acquisition of frequent radar measurements using a convoy a low-Earth orbiting (LEO) CubeSats.
In the propsed mission, each spacecraft would carry a mini nadir-pointing Ka-band Atmospheric
Radar (MiniKaAR), which uses the Radar in CubeSat (RainCube) technology recently developed
at JPL. A preliminary performance analysis of such a train of radars provides guidelines about
the optimal inter-satellite separation, and the sensitivity of the radar measurements and retrievals
to pointing uncertainties.

The outline of this article is as follows. First, a preliminary heuristic analysis is presented in
Section 2 to discuss the relationship between derivatives of radar reflectivities and derivatives of
the mass of condensed water. Section 3.1 then illustrates the spatial patterns of these derivatives
using NEXRAD measurements of three extreme-weather events, viz. a blizzard in Northern Cali-
fornia, a tropical cyclone making landfall and tropical storm interacting with complex orography.
This part involves uniquely measurements and no numerical model simulation of the atmosphere.
Next, in Section 4, numerical simulations of the atmosphere are used with radiative-transfer sim-
ulations to quantify the relation between derivatives of the radar reflectivities and atmospheric
thermodynamic variables. In Section 5, we analyze the design criteria that are required to obtain
frequent radar measurements from a train of spaceborne radars on small satellites. Conclusions
are provided in Section 6.

2 Time derivatives of the radar reflectivity factors

We consider a set of reflectivity factor measurements {Z[mm6·m−3](r, t), r ∈ Ω, t ∈ T } obtained
from ground-based, airborne or spaceborne radars over an observation volume Ω ⊂ R3 at times
T = {tk}k ⊂ R. The total derivative of Z[dBZ] = 10 log10(Z[mm6·m−3]) then reads

dtZ[dBZ](r, t) =
10

ln(10)

dtZ[mm6·m−3]

Z[mm6·m−3]

= ∂tZ[dBZ](r, t) +U(r, t) · ∇rZ[dBZ](r, t). (1)
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Through the presence of the advection U in Eq. (1), dtZ[dBZ] tracks the motion of an air parcel
between radar acquisitions and measures the variation of its reflectivity factor thereby quantifying
the net effect of sources and sinks of reflectivity.

Numerically, the derivative between data at instants t`−1 and t` is approximated by finite differ-
ences as follows

dtZ[dBZ](r, t`) ≈
Z[dBZ](r, t`)− Z[dBZ] [r +U (r, t`−1), t`−1]

t` − t`−1

. (2)

Typical cases where the contribution of the advection in Eq. (1) can be neglected are when the
characteristic length U(r, t`−1)(t`− t`−1) is smaller than or comparable to the spatial resolution
of the volume Ω, as is the case with high-resolution convective data sets that involve processes
that develop essentially along the vertical.

The relevance of dtZ can be motivated in terms of the micro-physical properties of the volume
observed by the radar. Indeed, it is common to relate the radar reflectivity to the total mass
of condensed water M contained in the resolution volume of the radar through an empirical
relationship such as [5, 9]

Z[mm6·m−3](r, t) = α(r, t)[M(r, t)]β(r,t), (3)

where α(r, t) > 0 and β(r, t) > 0, or in logarithmic scale,

Z[dBZ](r, t) = αdB(r, t) + 10 β(r, t) log10[M(r, t)], (4)

with αdB = 10 log10(α). Compared to M(r, t), which depends on and varies rapidly with
the PSD and microphysical properties of the medium, the coefficients α(r, t) and β(r, t) exhibit
much slower temporal and spatial variations [8]. Hence, dtZ[dBZ] can be related to dtM as follows

dtZ[dBZ](r, t) ≈
10β(r, t)

ln(10)

dtM(r, t)

M(r, t)
, (5)

As a corollary to the slow variation of β with space and time, Eq. (5) shows that the linear
correlation between dtZ[dBZ] and dtM/M should be very robust. Moreover, since β and q are
positive, the sign of dtZ[dBZ] provides information about the dominance of either evaporation or
condensation in the atmospheric volume. Such information, which is derived exclusively from
the radar measurements, can be used to nudge numerical weather forecasting programs (NWP)
or to identify regions of saturation where latent heating profiles can be retrieved [7].

3 Applications to NEXRAD extreme-weather measurements

Due to the absence of collocated spaceborne or airborne radar data sets with sufficiently high
spatial and temporal resolutions, we resort to ground-based measurements. The network of

6



NEXRAD radars provides an large variety of 3D measurements for a broad range of weather
conditions at numerous locations across the US. These S band radars are mainly sensitive to
heavy precipitation. We consider three such extreme-weather cases, viz. the California blizzard
of January 2008, the tropical cyclone Fay in Florida (August 2008) and the tropical storm Iselle
in Hawaii (August 2014).

The native data is available as 3D conical volume scans produced every 5 minutes, on average. To
ease the computation of derivatives, the radar data are meshed into a Cartesian grid with a resolu-
tion ∆X = ∆Y = 1.5 km horizontally and ∆Z = 250 m vertically. Given the time sampling rate
of the data (i.e. 4-6 minutes), and since the events studied involve significant horizontal displace-
ments, the advection field U must be included in the computation of the derivatives of Z[dBZ].
Failing to do so leads to erroneous estimates of the total derivative as shown in Appendix A.1
(Fig. 18).

We estimateU entirely from the radar data using a digital-image correlation technique (DICT) [21].
As detailed in Appendix A.1, given two consecutive radar acquisitions at times t0 and t1, the
DICT identifies the field U that maximizes the statistical correlation between the field of Z[dBZ]

at t1 and the field of Z[dBZ] at t0 displaced according to U . The statistical optimization is per-
formed for every vertical layer of radar data individually thereby yielding a “2.5D” advection
field. This is a compromise between a crude 2D approach that would correlate vertical averages
of Z[dBZ] at t0 and t1, and the full 3D approach that would incur significant additional compu-
tations. The DICT is applied by computing local correlations over a neighborhood that extends
over ±10 km in the longitudinal and meridional directions thereby resolving advection speeds
up to ∼ 120 km · h−1.

3.1 California blizzard: Sacramento, January 2008

The superstorm that hit Northern California in early 2008 led to record low pressures for a storm
in the western United States and heavy precipitation in the Sierras (snow) and the Bay area (rain).
The geostationary infrared image in Fig. 1 hints that the storm consisted of a baroclinic system
drawing some moisture from the “Pineapple Express” to the South-West. The data used here
were recorded by the NEXRAD radar in Sacramento (KDAX) during the peak of the storm, i.e.
from 01-04-2008 at 18:00 to 01-05-2008 at 01:00. In particular, from 21:38 to 00:30 a squall line
swept through from the North-West to the South-East, as shown in Fig. 2 (top, left). This case is
a prime example of interaction between a strong precipitation system and a complex topography
organized meridionally with the ocean to the West, the Northern and Southern Coastal Range
mountains, the Great Valley and the Sierra Nevada to the East. Moreover, due to its relatively
short life cycle (3 hours), the evolution of the squall line could not have been captured with a
sufficient temporal resolution by any of the existing LEO spaceborne radars. The spatial distribu-
tion of the vertically averaged reflectivity (denoted Eh[Z]), and its derivative (denoted Eh[dtZ])
are shown in Fig. 2 for three acquisition periods, viz. from 22:11 to 22:16 where the squall line
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Figure 1: Visible image of the January 2008 North American Superstorm at peak intensity, on
January 4, 2008. Courtesy of NASA - http://www.wunderground.com/hurricane/2007/jan04.jpg

is clearly visible (left), before the formation of the squall line (middle) and after the formation of
the line (right).

A 6× 6 km2 smoothing kernel is applied to Eh[dtZ] to reduce its noisiness. The maps of Eh[Z]
clearly show the squall line to the East of Sacramento with a slightly slanted meridional orienta-
tion. One can note the differences in the patterns of Eh[dtZ] compared to those of Eh[Z] as the
regions with the largest Eh[Z] do not necessarily correspond to the regions of largest Eh[dtZ],
and vice versa. Furthermore, because the derivative accounts for the advection, the displace-
ment of the squall line is not visible in the map of Eh[dtZ]. The cells of increasing/decreasing
reflectivity are mainly oriented from North-West to South East, i.e. parallel to the topography
and orthogonal to the squall line. These patterns are confirmed by the maps of the data averaged
over longer periods both before and after the formation of the squall line. On the other hand,
persistent regions of increasing reflectivity can be seen in the South-West over the Bay area and
in the Sierras, while a region of reflectivity sinks is present in the Great Valley. These patterns are
consistent with the presence of an atmospheric river (AR) of water vapor (see figure 3), which the
authors had looked for among the AR events that had been cited by the time of our analysis by
Ralph et al in [19] and the references therein, in vain, but which features as one of the strongest
AR events by every measure in the more complete list compiled in Ralph et al [20]. Note how
the condensation appears to be triggered mostly over the coastal ranges, where the AR “makes
landfall” (and compare with the center panels of figure 18), triggering a wave train propagating
inland in the same direction as the AR itself.
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Figure 2: Maps of vertically averaged reflectivity (top) and associated derivative defined by equa-
tion (1) (bottom) as observed by the NEXRAD radar in Sacramento on 01-04-2008: temporally
averaged from 22:11 to 22:16 (left) during the presence of the squall line, from 18:14 to 20:53
(middle) before the formation of the squall line, and from 21:02 to 01:00 (during squall).

3.2 Tropical storm Fay: Melbourne, Florida, August 2008

Fay was a tropical storm characterized by an erratic trajectory as it zigzagged between the ocean
and land. The data analyzed here were measured by the radar in Melbourne (KMLB), Florida,
from 08-19-2008 at 18:00 to 08-19-2008 at 01:00. During this time, the eye of the cyclone
had a relatively slow northward motion from (81◦W, 27◦N) at 18:00 up to (80.8◦W, 27.5◦N) at
01:00. The maps of Eh[Z] and Eh[dtZ] in Fig. 4 correspond to vertical and temporal averages
over 10 minutes (left) and two hours (middle) about 22:00 and over the entire observation period
(right). For the data averaged over a short duration (left column), the map of Eh[Z] clearly
shows the eye as well as spirals of large reflectivity associated with the rain bands. The map of
Eh[dtZ] shows various regimes with concentric spirals, viz. one spiral of decaying reflectivity
bracketed by an inner and outer spiral of increasing signal. Averaging over a longer duration
(middle, right) confirms these features and also shows that the sources of Z (i.e. Eh[dtZ] > 0)
are mostly over water (East of Melbourne (KMLB)) whereas over land Z has a decreasing trend
(i.e. Eh[dtZ] < 0), which is consistent with the ocean acting as a source of moisture.
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Figure 3: Water vapor derived from AMSR-E courtesy of RSS – note the atmospheric river
advecting water vapor from the South West towards California.

3.3 Tropical storm Iselle: Hawaii, August 2014

The tropical cyclone Iselle was the strongest cyclone to make landfall on the Big Island of
Hawaii, according to recorded history. Although by the time it reached the Big Island it was
downgraded to a tropical storm, it still carried significant amounts of precipitation. The moun-
tainous relief of the Island disrupted the spatial organization of the cyclone and eventually led to
its disappearance on August 9 2014. The data analyzed here were measured by the South Shore
radar (PHWA) on August 8 2014, i.e. as the cyclonic organization of Iselle (arriving from the
East) was being dismantled. Indeed, one can still see the rain bands in the data averaged between
11:14 and 11:20 in Fig. 5 (left), both as larger values of Eh[Z] and Eh[dtZ] along the Southern
portion of the storm. For the data averaged over the early (i.e. before 16:00, middle column)
and late (i.e. after 16:00, right column) observation periods, the map of Eh[Z] does not seem
to change significantly. However, the corresponding maps of the derivatives clearly show the
differences in regimes, with significant build-up of reflectivity in the early period caused by the
moisture brought by the storm, and the dissipation by precipitation that occurs in the later period
as evidenced by the negative derivatives. This is yet another example of the added value of the
derivatives of Z.
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Figure 4: Maps of vertically averaged reflectivity (top) and associated derivatives (bottom) as
observed by the radar in Melbourne, FL on 08-19-2008: temporally averaged between 22:00 and
22:12 (left), between 21:03 and 23:00 (middle) and between 18:06 and 01:00.
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Figure 5: Maps of vertically averaged reflectivity (top) and associated derivatives (bottom) as
observed by the radar at South Shore, HI on 08-08-2014: temporally averaged between 11:14
and 11:20 (left), between 10:44 and 16:00 (middle) and between 16:00 and 18:00 (right).

3.4 Comments and limitations

The cases discussed in this section illustrate how the analysis of the derivatives of the radar
reflectivity provides more insight into dynamic and environmental features than the maps of Z
alone (e.g. the moistening caused by the atmospheric river in the Blizzard case, moisture source
from the ocean in the storm Fay, and distinction between moisture build-up and collapse by
extensive precipitation of the cyclone Iselle).

The discussion has focused mainly on vertical averages of Z and dtZ, and not on the vertical
structure of these variables. Also, the advection, which is essential to the computation of the
derivatives of the NEXRAD data, was computed via the DICT approach in 2.5D, i.e. without
resolving the vertical component. Such an approach is acceptable when dealing with baroclinic
systems for which horizontal gradients induce instability and the resulting motion is mostly hor-
izontal with large-scale lifting. Even then, the vertical component of the dynamics is important,
e.g. to analyze orographic enhancements or convective lifts. Moreover, for tropical convection,
the instability has a critical vertical aspect whereas the lifting is horizontally localized.

12



While the analysis in this section has been qualitative, ultimately one needs to relate the deriva-
tives of Z[dBZ] to physical parameters of the atmosphere, which is non trivial. In the absence of in
situ measurements as is the case here, the only alternative would be to correlate the derivatives of
Z[dBZ] measured by NEXRAD to reanalysis products. However, these reanalysis products are not
available at a sufficiently fine horizontal or temporal resolution to compute meaningful deriva-
tives consistent with the NEXRAD resolution. For instance the NASA Modern-Era Reanalysis
(MERRA) products are, at best, available hourly at a horizontal resolution of 0.5◦ (∼ 50 km),
which is significantly coarser than the resolution of the NEXRAD data.

Lastly, we are also interested in finer resolutions than the NEXRAD resolutions, particularly
along the vertical dimension, and in time. All these reasons motivate the use of numerical weather
models for which model-truths of thermodynamic parameters of the atmosphere are available.

4 Applications to WRF simulations of Isabel

The Weather Research and Forecasting model (WRF) was used to simulate the state of the atmo-
sphere during the incipient phase of Hurricane Isabel off the coast of Cape Verde in the Atlantic
ocean (lon ∼ 30.7◦W, lat ∼ 11.4◦N). A 5-nested-grids configuration was used with respective
horizontal resolutions of 12 km (for the outer grid), 4 km, 1.333 km (the “d03” grid), 444 m
and 148 m. Vertically, 60 pressure levels were used between the surface and 20 km, with more
samples close to the surface. The WRF model was initialized with the GFS FNL analysis on
5 September 2003 at 12:00 UTC and the output was collected every 30 seconds from 06:00 to
07:00 UTC. In this article, we focus mainly on the intermediate domain (d03), which roughly
spanned a domain from longitudes 36◦W to 26◦W and from latitudes 6◦N to 16◦N.

4.1 Radiative-transfer simulations

In addition to the thermodynamic variables such as the pressure, temperature and wind, the WRF
includes the bulk masses of water in the forms of vapor, cloud liquid water, cloud ice, snow,
graupel and snow. We use these inputs to compute the corresponding Ka-band reflectivity factors
that would be observed by a spaceborne radar like GPM-Core’s. The radiometric signatures of
each of water species depend on fine-scale information such as the size distribution, the shape and
the density of individual particles in the volume observed by the radar. All these properties are
inferred through micro-physical assumptions. Different microphysical schemes are considered
in order to quantify the extent to which the dependence of the instantaneous measurements on
the microphysical detail is reduced when one considers the change in time at a given location.

To avoid re-computing the scattering behavior of every individual particle, a look-up-table (LUT)
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approach is employed by building scattering tables for a selection of particle size distribu-
tions, shapes and densities. These tables are then accessed, for every species i, using the
bulk mass Mi from WRF and the mean mass-weighted diameter Dm,i resulting from the micro-
physical assumptions. Three different micro-physical parameterizations (MPP) are considered,
viz. Lin [16], WSM6 [11] and ZSH schemes. In the first two MPPs, the diameters Dm,i are com-
puted using PSD and mass-size relationships provided in the literature, whereas the radiometric
parameters are obtained from a T-matrix code [23]. The third scheme (ZSH), which was derived
by the authors by assuming Dm to be related to M through a power law Dm,i = αM0.17

i with α
a function that varies very slowly in space and time. The scattering LUT is then built assuming
Gamma distributions and using DDSCAT, which is based on discrete-dipole approximations [6].

Thus for every record in the WRF “d03” data set, the unattenuated reflectivity Zu,i(Mi, Dm,i)
and the specific attenuation kext,i(Mi, Dm,i) provided by the LUT are combined to obtain the
equivalent reflectivity

Z(r, h) =

Nspecies∑
i=1

Zu,i(r, h) exp

−2

∫
[k,∞)

Nspecies∑
j=1

kext,j(r, h
′)dh′

 , (6)

with r the geodetic coordinates of the profile and h the height. These radar reflectivities are
aggregated horizontally to obtain a ∼ 4.5× 4.5 km2 horizontal resolution similar to GPM DPR,
while preserving the original fine vertical sampling of WRF (60 layers between 0 and 20 km).
The other WRF output are also averaged to this spatial resolution.

Unless stated otherwise, all the results obtained with all these microphysical schemes are consid-
ered equally likely and used together, i.e. as various realizations of the state of the atmosphere.
Doing so provides a way of assessing the sensitivity of our simulations and algorithms based on
the derivatives of Z. As a result, the data set used in this study comprises 120 instants (every
30 s between 06:00 and 07:00 UTC) for which every scene has 233× 233 profiles, each one with
60 vertical bins, and each of these scenes has three realizations of Z corresponding to the three
micro-physical schemes.

As an example the maps of vertical averages of the radar reflectivity Z simulated using the
WSM6 scheme is displayed in Fig. 6, together with corresponding averages masses of water
vapor and condensed water M , and a mask that shows the convective profiles. These maps
show the spatial organization of the depression that later became the eye of the hurricane. The
convection is mainly present as localized or “popcorn” cells.
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Figure 6: Maps of Isabel simulations at 06:00 UTC: vertically averaged water vapor mass (top
left), maximum absolute vertical wind |ω|max in convective profiles (top right), CWM (bottom
left) and Ka band reflectivity using WSM6 micro-physics (bottom right).
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4.2 Comparisons between Z −M and ∆tZ −∆tM relationships

It is common in literature to estimate the CWM from the radar measurements via a relation of
the form

M = aZb, (7)

with a and b constants [15]. However, universal constants (a, b) that fit all precipitation types at
all times and locations do not exist, and retrievals that only use a single frequency suffer from the
large variability in space and time of these parameters, particularly a [4]. This large variability
is illustrated in Fig. 7, which shows the dispersion in the Z −M relation, as well as maps of
adB = 10 log10(a) and b obtained by fitting GPM-Core Ka band reflectivity measurements to
Level-2 total water contents retrieved from both GPM channels and the passive microwaves.
These results correspond to data above an altitude of 4.5 km, to avoid adverse effects caused by

Figure 7: Relation from GPM Ka-band reflectivity measurements (Z) and Level-2 retrieved total
water content (M ), over the entire month of June 2015 and above 4.5 km: joint distribution of
Z − M (top), parameters adB (second row) and b (bottom row) of a regression M[dBkg/m3] =
adB + bZ[dBZ].

attenuation and the melting layer on the retrieved CWM. The regressions are applied to regions
of size 1.5◦ × 1.5◦ for measurements from the entire month of June 2015. While the exponent b
remains mostly between 0.6 and 0.8, the largest variations affect adB.

The large scatter in the Z−M relation is also present in the Isabel simulations as shown in Fig. 8
where the micro-physical parametrizations are either grouped together (top row) or considered
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individually (rows below). Similarly to Fig. 7, the Isabel results are analyzed above an altitude

Figure 8: Relationships Z − M (left) and ∆tZ[dBZ] − ∆tM[dB] (right) with time differences
computed over ∆t = 90 s. Results for all the microphysics grouped together (top) or used
individually: Lin (second row), WSM6 (third row) and ZSH (bottom) micro-physics.

of 5.9 km (∼ 500 mb level), to avoid the effects of excessive attenuation on the reflectivity. This
large variability translates into a prohibitive uncertainty in the retrieved M . For instance, when
all the MPP are grouped together (top row, left), there is almost a 20 dB range of uncertainty for
the mass corresponding to Z = 20 dBZ.

The time derivatives of Z[dBZ] and M[dB] = 10 log10(M) are computed by finite differences over
a baseline ∆t = 90 s. Such a short baseline combined the dominantly convective nature of the
scene allows to properly estimate the derivatives without accounting for the horizontal advection.
The joint distributions of ∆tZ[dBZ] = ∆Z[dBZ]/∆t and ∆tM[dB] = ∆M[dB]/∆t are shown in
Fig. 8 (right). Remarkably, the uncertainty on ∆tM[dB] retrieved from ∆tZ[dBZ] is considerably
smaller than the uncertainty on M . The slope between ∆tM[dB] and ∆tZ[dBZ], i.e. a measure of
the exponent b, is robust around ∼ 0.7 and largely independent of microphysical assumptions.
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As explained in Section 2, the robustness of the (∆tM[dB],∆tZ[dBZ]) relation stems from the fact
that, on time scales of order 30–120 seconds and above the freezing level, biases inherent in
Z −M relationships that produce a large spread cancel when data are differentiated over short
time intervals (tens of seconds). Thus, the computed ∆tZ[dBZ] provides a reliable measure of the
moistening rate of the upper troposphere.

4.3 Vertical air mass fluxes: relation to ∆tZ and Bayesian retrievals

We now demonstrate that pairs of radar measurements and their derivatives contain unique in-
formation about vertical transport of air in convective cores. To this end a canonical-correlations
analysis (CCA) is combined with a principal-component decomposition to identify correlations
between radar measurements and vertical fluxes of air masses. A Bayesian algorithm is then
described to estimate the vertical fluxes of dry and moist air in convection from the radar obser-
vations. These retrieved results can then be scaled relative to the total amount of convection by
using passive-microwave measurements.

Given two observation times t and t + ∆t, we denote the corresponding radar observations
ZPRE(·, ·, t) = Z[dBZ](·, ·, t) and ZPOST(·, ·, t) = Z[dBZ](·, ·, t + ∆t) and define the time-average
and -difference as ZAVG = (ZAVG + ZPOST) /2 and ∆tZ[dBZ] = (ZPOST − ZAVG) /∆t, respec-
tively. The net mass of dry air transported vertically between times t and t + ∆t through the
profile r at the altitude h ≥ 0 is measured via the flux

QAIR(r, h, t) =

∫ t+∆t

t

ρAIR(r, h, t′)ω(r, h, t′)dt′ [kg ·m−2]. (8)

The flux of moist air QCWM is defined similarly by substituting M for ρAIR in Eq. (8). While the
radar products ZAVG and ∆tZ[dBZ] only use observations at times t and t+∆t in the upper tropo-
sphere (h ≥ 5 km), the flux QAIR is defined using contributions from ρAIRω at all intermediate
times between t and t+ ∆t and over the entire profile (h ≥ 0). The set Ct of convective profiles
at time t gathers the profiles that contain at least five bins with Z[dBZ] ≥ 5 dBZ and at least one
bin with a vertical wind |ω| ≥ 1 m · s−1. The set of all convective profiles between 06:00 and
07:00 UTC is denoted C = {Ct}06:00≤t≤07:00 UTC.

4.3.1 Principal-component and canonical-correlation analyses

Focusing on the convective profiles in C, a principal-component analysis (PCA) is applied to
ZAVG, ∆tZ[dBZ] and QAIR. This allows to project the initial fields, e.g. QAIR, on the basis of
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principal vectors {ϕQ,k}k=1,...,N0 as follows

QAIR(r, h, t) =

N0∑
k=1

ηQ,k(r, t)ϕQ,k(h), ∀h ≥ 0 km, (9)

where N0 = 60 is the number of bins in the entire vertical profile. The principal components
(PC) {ηQ,k}k=1,...,N0 are mutually uncorrelated with variances equal to the sorted eigenvalues
{λQ,k}k=1,...,N0 . Similarly, ZAVG and ∆tZ[dBZ] are expressed in terms of their eigen-systems
denoted {λA,k,ϕA,k}k=1,...,N1 and {λD,k,ϕD,k}k=1,...,N1 , respectively. The rapid decay of the
eigenvalues allows to approximate the initial fields using the first few PCs, while capturing the
variability of the initial fields. For instance, Table 1 shows that the first four PCs of QAIR and
ZAVG already represent more than 90% of the total variability. For ∆tZ[dBZ], which has a less
smooth spectrum, the first six PCs still represent more than 70% of the total variability.

Table 1: Relative weights of the first principal components of QAIR, ZAVG and ∆tZ[dBZ] from all
convective profiles in the Isabel simulations.

Relative weight of the first M eigenvalues, i.e.
M∑
k=1

λk

/ ∞∑
k=1

λk

M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8

QAIR 0.44 0.72 0.85 0.92 0.95 0.97 0.98 0.99

ZAVG 0.52 0.81 0.90 0.94 0.97 0.98 0.99 0.99
∆tZ[dBZ] 0.24 0.40 0.53 0.62 0.69 0.74 0.78 0.81

Figure 9 shows the profiles of the first three eigenvectors of all the fields. These profiles indicate
the combinations of the initial fields that produce the largest variability in space and time. For
instance, the first principal vector ϕA,1 corresponds to a weighted average of ZAVG above 5 km,
with an emphasis around ∼ 8 km, whereas ϕA,2 is a weighted difference between ZAVG(h ≥
8 km) and ZAVG(h ∈ [5, 8] km). A similar structure can be seen in the eigenvectors of the dry
air flux, where ϕQ,1 averages QAIR mainly around 5 km and ϕQ,2 makes the difference between
QAIR(h ≥ 5 km) and QAIR(h < 5 km). The eigenvectors of ∆tZ[dBZ] have different patterns
as ϕD,1 is an average of ∆tZ[dBZ](h ∈ [5, 10] km) corrected by the average of ∆tZ[dBZ](h ≥
10 km), and conversely ϕD,2 is an average of ∆tZ[dBZ](h ≥ 7 km) corrected by the average of
∆tZ[dBZ](h ∈ [5, 7] km).

Next, a canonical-correlation analysis (CCA) is applied to identify the linear combinations of the
radar observations that are most correlated with components of QAIR [12]. The details of our
implementation of this statistical method are provided in Appendix B. As a result we obtain a
set of CCA projectors,

ψA,j(h) =

M1∑
k=1

ak,jϕA,k(h), ψD,j(h) =

M2∑
k=1

aM1+k,jϕD,k(h) and ψQ,j(h) =

M0∑
k=1

bk,jϕQ,k(h),(10)
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Figure 9: Principal-component (PCA) and canonical-correlation analyses (CCA) of convective
profiles in Isabel: vertical profiles of principal vectors (top) for ZAVG (left), ∆tZ[dBZ] (middle)
and QAIR (right), with normalized eigenvalues in legend; vertical profiles of CCA weighting
vectors (second row) for ZAVG (left), ∆tZ[dBZ] (middle) and QAIR (right), with CCA correlation
coefficient in legend; joint distributions of first (left), second (middle) and third (right) CCA pairs
of variables (bottom row).

that define the CCA variables

vj(r, t) =

∫ ∞
0

QAIR(r, h, t)ψQ,j(h)dh, (11a)

and uj(r, t) = uA,j(r, t) + uD,j(r, t), (11b)

with uA,j(r, t) =

∫ ∞
5

ZAVG(r, h, t)ψA,j(h)dh, (11c)

uD,j(r, t) =

∫ ∞
5

∆tZ[dBZ](r, h, t)ψD,j(h)dh. (11d)

The cefficients {ak,j}k,j and {bk,j}k,j are provided by the CCA algorithm. By construction, the
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pairs of CCA variables (uj, vj) are sorted by decreasing levels of statistical correlation. This
is illustrated in Fig. 9 (bottom), which shows the scatterplot of the first three pairs of CCA
variables and the correlation levels dropping from 72% for (u1, v1) to 65% for (u2, v2) and 56%
for (u3, v3). All these are significant levels of correlation. The profiles of the corresponding CCA
projectors (second row) differ from those of the principal vectors. Interestingly, even though the
entire profile of Qair is used in the analysis, the strongest contributions in ψQ,j correspond to
altitudes above 5 km where the radar observations are available. The frequent changes in the
signs of ψD,j make it difficult to interpret the patterns of these vectors. Conversely, we see from
ψQ,1 and ψA,1 that the difference between the dry air transported above 8 km and the dry air
transported below 8 km is strongly related to a weighted average of the reflectivity ZAVG around
7, 10 and 13 km.

4.3.2 Bayesian retrieval of vertical mass fluxes

While the results in Fig. 9 confirm the significant correlation between profiles of radar observa-
tions and vertical mass fluxes, the scatter in the joint distributions of CCA variables indicates that
there is more to the dependency of QAIR on ZAVG and ∆tZ[dBZ] than simple linear relationships
between CCA variables. Thus, to estimate the profile of QAIR from ZAVG and ∆tZ[dBZ], we use
a Bayesian-interpolation approach conditioned by ZAVG.

First, the ranges of the dominant PCs of ZAVG are divided into sub-domains. To obtain a grid
with a manageable size, an importance-sampling strategy is used, i.e. the range of ηA,k is divided
according to the weight of its eigenvalue into Nk = d10λA,k/λA,1e + 1 sub-domains. In the
present case, this implies N1 = 11, N2 = 7, N3 = 3 and N4 = N5 = N6 = 2. Then,
given a cell A0 in the resulting hyper-cube, we determine all the corresponding samples (i.e.
C0 = η−1

A (A0) ⊂ C) and use these samples (i.e. {ηD,k}k=1,...,M2(C0) and {ηQ,k}k=1,...,M0(C0)) to
interpolate every component of {ηQ,k}k=1,...,M0 individually in terms of all the components of
{ηD,k}k=1,...,M2 . 1 A first-order polynomial interpolation is used (we have verfied that higher-
order interpolations yielded limited improvement). By repeating the process for every cell of the
hypercube, we obtain an approximation for the PCs of QAIR, which are denoted {η̂Q,k}k=1,...,M0

and used in Eq. (9) to approximate QAIR by

Q̂AIR(r, h, t) ≈ EQ(h) +

M0∑
k=1

η̂Q,k(r, t)ϕQ,k(h). (12)

The accuracy of this retrieval algorithm is illustrated in Fig. 10 (left columns), which shows the
joint distribution of the retrievedQAIR versus the model truth. These quantities are averaged over
100-mb-thick layers. Indeed, we observe the strong correlation (≥ 75%) between the estimated

1In fact, we use {ηD,k}k=1,...,M1(C0) and {vj}j=1,...,M0(C0) and interpolate every component of {vj}j=1,...,M0

individually in terms of all the components of {ηD,k}k=1,...,M1 . Then, we pseudo-invert the matrix of CCA coeffi-
cients to obtain ηQ,k}k=1,...,M0

from {vj}j=1,...,M0
.
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and true fluxes of dry air. The same retrieval algorithm is applied to the flux of moist air QCWM

and yields equally accurate results as can be seen in Fig. 10 (right).

Figure 10: Results of Bayesian retrievals of dry- (left) and moist- (right) air fluxes QAIR and
QCWM versus model truths. The Fluxes are averaged vertically over [200,300] mb (top) and
[300,400] mb (bottom).

The accuracy of the retrievals is also apparent in the CFADs of the retrieved mass fluxes com-
pared to those of the true fluxes. Figure 11 shows the nearly perfect restitution of the mean and
median (50%) profiles of QAIR and QCWM. The dynamic range of the fluxes (indicated by differ-
ence between 20% and 80% quantiles) is also well estimated despite the slight underestimation
of lower values of QAIR and the underestimation of the largest values of QCWM below 7.5 km.
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Figure 11: Statistical comparison between retrieved air mass fluxes and model truths: CFAD of
dry-air flux (left) and moist-air flux (right).

4.4 Scaling of results in convection

For numerical weather models to fully benefit from the retrieved convective fluxes, these must
be scaled relative to the total amount of convection in the tropics. Indeed, due to their narrow
swaths, spaceborne radars can only observe a limited portion of the tropics.

For this purpose, the large fleet of wide-swath radiometers in LEO is particularly valuable as
it warrants a frequent revisit time in the tropics. For instance, the GPM-era constellation of
mm-wave sounders revisits every point in the tropic at least 18 times daily. While the measured
brightness temperatures do not resolve the vertical structure of precipitation, they are sensitive to
different heights of the atmosphere depending on the frequency of the instrument. The various
passive measurements can be combined to build estimators for the vertically integrated water
content of the atmosphere and therewith the depth of convection.

This capability is illustrated in Fig. 12 using the WRF data at at 06:00 UTC and WSM6 scatter-
ing tables in the Successive Order of Interaction (SOI) radiative-transfer model [10] to simulate
brightness temperatures. The simulated channels are those of the Microwave Humidity Sounder
(MHS), i.e. T89,V , T157,V , T183.311±1,H , T183.311±3,H and T190.311,V with H (V) indicating a hori-
zontal (vertical) polarization. By applying a CCA to the first four PCs of the condensed water
mass M and the measured brightness temperatures, an estimator is built for the M . The maps
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in Fig. 12, show the high correlation between this estimator (right) and the vertically integrated
CWM (left).

Figure 12: Comparison between vertically averaged CWM M (left) from Isabel simulations at
06:00:00, and our proxy for CWM (right) consisting of the optimally correlation combination of
MHS brightness temperatures determined from the statistics that we calculated from our simula-
tion using WSM6 microphysics.

5 Application to a convoy of satellites

Given the long revisit time of low-Earth orbiting satellites, the only way to gather frequent radar
observations with a sufficient time resolution to enable the analysis proposed in this article con-
sists in using multiple spacecraft. The idea is to acquire the atmospheric measurements using a
convoy of satellites that trail each other by a short time ∆t. Such a concept can be implemented
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in practice owing to recent advances in small-satellite technologies that allow to deploy multi-
ple CubeSats on the same orbit in one launch at a reasonable financial cost. Equally important
are the advances made in electronic hardware and signal processing techniques to miniaturize
radars and qualify them for spaceborne missions. One such example is the novel Radar in a
CubeSat (RainCube) technology developed at JPL (see artist concept in Fig. 13) and selected for
demonstration in space by NASA through its In-Space Validation of Earth Science Technologies
(INVEST) program [17].

Figure 13: Artist’s concept of RainCube.

For our concept study, we consider a train of two such satellites separated by a given time ∆t
and each embarking a “Mini nadir-pointing Ka-band Atmospheric Radars” (miniKaAR) that use
the RainCube technology. The characteristics of miniKaAR are summarized in Table 2. With a
horizontal resolution of 5 km and a vertical sampling of 250 m, the measurements of this instru-
ment will have a strong synergy with the dual-frequency radar of the GPM Core satellite. We
analyze the impact of some of the hardware and operational design parameters on the accuracy
to be expected from a time-differenced analysis, and conversely the design constraints imposed
by the performance thresholds of our radar analysis.

5.1 Effect of the sensitivity in reflectivity

The cumulative distribution function of the reflectivity factors in the convective cores of our
Isabel simulations (from 06:00 to 07:00 UTC and using all micro-physics) is computed and
plotted as a function of height in Fig. 14. This figure whos that given its 17 dBZ sensitivity,

25



Table 2: Characteristics of miniKaAR.
miniKaAR Characteristics Estimate

Mass 21 kg
Volume Dimensions 10× 20× 20 cm3

Antenna size 95 cm
Frequency 35.75 GHz

Peak transmit power 10 W
Spatial Resolution 5 km
Range Resolution 250 m

Measurement sensitivity 17 dBZ
Measurement precision 1 dBZ

MiniKaAR should be able to observe more than 70 % of all Ka-band reflectivities between 4.5
and 9 km. As expected, the returns below 4.5 km should be strongly affected by attenuation,
while the hydrometeors in the upper troposphere (above 10 km) should produce relatively weak
echoes.

5.2 Optimal inter-radar separation

To investigate the effect of the time spacing between the two spacecraft of the convoy, we con-
sider different time delays, viz. ∆t ∈ {30 s, 60 s, 90 s, 240 s} and compute the CFADs of
absolute changes in Z[dBZ], which are plotted in Fig. 15 (bottom). Moreover, to measure the
non-stationarity of Qair, we compute the maximum relative variation of Qavg as a function of ∆t
using the ratio

rQ(r, h, δt) =
max∆t≤δt[Qavg(r, h,∆t)]−min∆t≤δt[Qavg(r, h,∆t)]

E∆t≤δt [|Qavg(r, h,∆t)|]
, (13)

with r the convective profile coordinates and h the height. For instance, rQ(r, h, δt′ = 60 s)
measures the relative variation ofQair in profile r at the altitude h as it is computed for ∆t = 30 s
and ∆t = 60 s.

The CDF of rQ plotted in Fig. 15 (top) shows that with a separation of 240 s, more than 50% of
all convective columns have a maximum variability that exceeds 150%. Thus, such a separation
would not yield useful measurements as the target QAIR that we want to estimate would have
varied by 150% or more. This statistic improves significantly for shorter separations, since for
∆t ≤ 60 s, 80% of all convective columns have a maximum variability that is smaller than 50%.
However, for ∆t ≤ 60 s, Fig. 15 (bottom) shows that 50% of all columns also have a reflectivity
difference that is below the 1 dBZ precision of MiniKaAR. Thus, the 90 seconds separation is a
compromise between sensitivity threshold to the change in reflectivity and the stationarity of the
dynamical variables during the time interval.
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Figure 14: CDF-by-altitude diagram of simulated miniKaAR reflectivity factors (with all three
micro-physics) for columns where |ω| ≥ 1 m · s−1.

5.3 Sensitivity to pointing uncertainties

Pointing uncertainties must be accounted for since the analysis presented in this article depends
crucially on the two spacecraft’s ability to observe the same atmospheric region. We tackle this
issue by gradually injecting mismatches between beam pairs and tracking their effects on the
correlation between the mass rate of change ∆tM/M and the commputed ∆Z[dBZ] from mis-
matched beams. Figure 16 illustrates the progressive degradation of the relation between the
measured reflectivity difference and the estimated rate-of-change of the mass that results from
a progressively greater degradation in the coincidence between the two beams, from our simu-
lations. The correlation between ∆tM and ∆Z[dBZ] goes from 86% when the beams coincide
perfectly (top left), to 81% (74%) when the overlap decreases to 78% (67%) (bottom row).

In terms of the uncertainty induced on the estimated mass rate, Figure 17 shows this degradation

27



Figure 15: CDF of the stationarity ratio rQ of QAIR for time separations of 60 s, 90 s, 2 min
and 4 min and computed over convective columns (top). CFAD of the absolute variation in
reflectivity over durations of 30 s, 60 s, 90 s, 2 min and 4 min and computed over convective
columns (bottom).

as a function of the fractional overlap between the two beams, as we derived it from our cloud-
resolving simulations. A decrease of the fractional overlap to 82% increases the r.m.s uncertainty
to 0.55, i.e., an increase of 10%. We required this to be the maximum increase in uncertainty due
to pointing. This lower bound on the fractional overlap is equivalent to requiring that the differ-
ence in the pointing angles (from an altitude of 500 km) should not exceed about 0.1 degrees.
Since the pointing errors on the two beams are independent, this can be enforced by requiring the
two-sigma error on each beam to be smaller than 0.05 degrees (so that even if the errors move the
two beams in exactly opposite directions, the difference will still not exceed 0.1 degrees). This
implies a required 1-sigma uncertainty of 0.025 degrees.

28



Figure 16: Effect of pointing uncertainties on ∆tZ[dBZ] − −∆tM relationship: with 100% (top
left), 89% (top right), 78% (bottom left) and 67% (bottom right) overlap between beams of two
miniKaAR radars.

6 Conclusions

This article has presented a novel technique to characterize dynamic atmospheric processes by
using frequently-acquired tri-dimensional radar reflectivity measurements from low-Earth orbit-
ing satellites. Starting with ground-based NEXRAD data, we have shown the added value of
time derivatives of the radar measurements, (possibly adjusted for advection estimated using a
digital-image-correlation technique). The derived products complement and refine the informa-
tion provided by the radar reflectivity factors by highlighting regions of increasing/decreasing
moisture in extreme-weather events such as blizzards of cyclones. The computed derivatives
also reveal latent features that are otherwise invisible in the radar reflectivities, such as the evi-
dence of water vapor provided by the atmospheric river that was concomitant with the California
Blizzard of January 2008.

Using a large set of high-resolution numerical-weather simulations from WRF, we have shown
the robustness of the dtZ[dBZ] − dtM/M relationship between derivatives of the reflectivity and
the rate of change of condensed-water mass in the upper atmosphere (above 500 mb). The
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Figure 17: Effect of pointing uncertainties on ∆tZ[dBZ] − −∆tM relationship: with 100% (top
left), 89% (top right), 78% (bottom left) and 67% (bottom right) overlap between beams of two
miniKaAR radars.

robustness of the dtZ[dBZ] − dtM/M relation, which is independent from the micro-physical
assumptions of the radiative transfer simulations, provides reliable estimates of the moistening
rate of the upper atmosphere, which can in turns be used to nudge numerical models. This is in
contrast with the large noisiness of single-frequency Z −M relationships, as evidenced using
level-2 GPM products.

The fine vertical resolution of our simulations allowed us to resolve vertical air mass transports
in tropical convective cores. By combining a principal-component analysis with a canonical-
correlation analysis, we have shown the significant correlation that exists in the upper atmosphere
between the radar observations and their derivatives on the one hand, and vertical fluxes of moist
and dry air on the other hand. Furthermore, we implemented a Bayesian retrieval algorithm to
restitute mass fluxes with a high degree of accuracy, i.e. with more than 70% correlation between
the estimates and their model truths, and a nearly perfect restitution of the mean and envelope
of the vertical profiles of QAIR and QCWM in convection. The thus obtained information could
help improve the parametrization of dynamic atmospheric processes such as detrainment, for
which there is a large uncertainty in current models. Moreover, we showed that these estimates
can be scaled for use in numerical-weather models by taking advantage of the dense coverage of
wide-swath passive-microwave sensors in low-Earth orbit.

All these encouraging results combined with the technological maturity of small-satellites and
miniaturized radars motivate the future development of spaceborne missions to acquire frequent
radar observations from a low-Earth orbit. The design study that we conducted assuming a
convoy of two spacecraft each with a MiniKaAR radar showed that i) more than 70% of the
convection above 5 km of altitude would be observed, ii) an inter-spacecraft separation of∼ 90 s
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would be a good compromise between the sensitivity to changes in reflectivity of MiniKaAR and
the stationarity of the targeted air mass fluxes, and iii) a pointing accuracy of 0.025◦ in half rms
per spacecraft should warrant the accuracy in the retrieved parameters.
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A Appendices

A.1 Estimation of the horizontal advection

To illustrate the digital-image-correlation technique (DICT) [21] used to estimate the advection
field U , we assume that the reflectivity observations are acquired at times T = {t`, ` ∈ N}
over a regularly meshed volume. In a Cartesian reference system the volume is denoted Ω =
{M i,j,k = (i∆X , j∆Y , k∆Z)}i,j,k with ∆X , ∆Y , ∆Z the step sizes of the mesh.

Given two consecutive radar data sets Z(·, t`−1) and Z(·, t`), for every point M i,j,k, and for
every horizontal displacement vector u among the possible displacement vectors U ⊂ R2, a
”horizontal neighbourhood”A is considered about the pointsM i,j,k andM i,j,k +u. The neigh-
bourhood A is chosen as a square, which covers (2n + 1) × (2n + 1) pixels, with n > 0. The
maximum size of the displacement vectors in U is chosen according to the maximum distance
the cloud/precipitation is expected to advect during the time span t`− t`−1, whereas the extent of
the averaging area A is chosen according to the spatial correlation length of the features of Z.

The cross-covariance between Z(M i,j,k, t`−1) and Z(M i,j,k + u, t`) is computed as

ρ(M i,j,k;u) =
EA

[
Ẑ(M i,j,k, t`)Ẑ(M i,j,k + u, t`−1)

]
σZ(M i,j,k, t`)σZ(M i,j,k + u, t`−1)

, (14)

where Ẑ(M i,j,k, t`) = Z(M i,j,k, t`)− EA[Z(M i,j,k, t`)],

σZ(M i,j,k, t`) = EA[Ẑ2(M i,j,k, t`)],

EA[f(M )] =
1

(2n+ 1)2

n∑
kX=−n

n∑
kY =−n

f [M + e(kX , kY )],
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for any function f , with e(kX , kY ) ∈ U an elementary displacement vector (by kX pixels along
the X axis, and kY pixels along the Y axis). As a result, we obtain the list of coefficients
{ρ(M i,j,k;u), u ∈ U}, from which the displacement vector u∗ is obtained as

u∗(M i,j,k, t`) = arg max
u∈U

ρ(M ;u, t, δt), (15)

and the advection as

U(M i,j,k, t`) =
1

t` − t`−1

u∗(M i,j,k, t`). (16)

To increase the robustness of the determination of the advection vector, we require that the esti-
mate of U be obtained from a clearly defined maximum of ρ. This amounts to requiring that the
Hessian of ρ be non-singular, e.g. by constraining its condition number.

The importance of accounting for the advection when dealing with frontal systems is illustrated
using NEXRAD observation of the California Blizzard discussed in Section 3.1. Figure 18 dis-
plays the vertical averages of Z (left), dtZ inclusive of the advection estimated by DICT (middle)
and ∂tZ not accounting for the advection (right), for data at 22:11 (top) or for data averaged be-
tween 18:14 and 01:00 (bottom). The strong advection of the storm produces large differences
in the maps of ∂tZ (right) and dtZ (middle) both in the instantaneous data (top) and their long-
term averages (bottom). On the one hand, the map of dtZ shows the sources of moisture in the
South-West originating from the atmospheric river. On the other hand, with ∂tZ the displace-
ment between consecutive radar measurements leads to a progressive cancellation of features in
∂tZ, as indicated by the smaller range of variation of ∂tZ compared to dtZ.

B Principal-component and canonical-correlation analyses

B.1 Principal-component analysis

To capture the variability of QAIR(h ≥ 0), ZAVG(h ≥ 5 km) and ∆tZ[dBZ](h ≥ 5 km) in a or-
ganized way, a principal-component analysis is applied. The covariance matrices KA, KD, KQ

are computed over the set C of convective profiles for ZAVG, ∆tZ[dBZ] andQAIR, respectively. An
eigenvalue decomposition of the covariance matrices yields the eigen-systems {λA,k,ϕA,k}k=1,...,N1 ,
{λD,k,ϕD,k}k=1,...,N1 and {λQ,k,ϕQ,k}k=1,...,N0 , with N0 the number of bins in the entire vertical
profile, and N1 the number of bins above 5 km. The eigenvalues are sorted in decreasing order,
i.e. λA,1 ≥ λA,2 ≥ . . . ≥ λA,N1 ≥ 0 and similarly for {λD,k}k=1,...,N1 and {λQ,k}k=1,...,N0 . The
principal vectors {ϕA,k}k=1,...,N1 , {ϕD,k}k=1,...,N1 and {ϕQ,k}k=1,...,N0 each form orthonormal
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Figure 18: Maps of vertically averaged reflectivity (Z, left panels), associated total derivative
(“dtZ” = ∂Z/∂t + V · ∇Z, center panels) and time derivative (“∂tZ” = ∂Z/∂t, right panels):
the top row shows the instantaneous values at 14:11 PST (during the squall), and the bottom
shows the temporal averages from 10:14 to 17:00 PST.
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bases onto which the initial fields are projected as follows

QAIR(r, h, t) ≈
N0∑
k=1

ηQ,k(r, t)ϕQ,k(h), ∀h ≥ 0 km, (17a)

ZAVG(r, h, t) ≈
N1∑
k=1

ηA,k(r, t)ϕA,k(h), ∀h ≥ 5 km, (17b)

∆tZ[dBZ](r, h, t) ≈
N1∑
k=1

ηD,k(r, t)ϕD,k(h), ∀h ≥ 5 km, (17c)

with

ηQ,k(r, t) =

∫ ∞
0

QAIR(r, h, t)ϕQ,k(h)dh, (18a)

ηA,k(r, t) =

∫ ∞
5

ZAVG(r, h, t)ϕA,k(h)dh, (18b)

ηD,k(r, t) =

∫ ∞
5

∆tZ[dBZ](r, h, t)ϕD,k(h)dh. (18c)

The principal components {ηA,k}k=1,...,N1 , {ηD,k}k=1,...,N1 , {ηQ,k}k=1,...,N0 have vanishing means
and variances equal to the eigenvalues {λA,k}k, {ηD,k}k and {ηQ,k}k, respectively. The generally
rapid decay of eigenvalues allows to approximate the initial fields using a few terms. For instance,
if our objective is to capture at least 80% of the variability of the fields, based on Table 1, Eqs (18)
can be truncated to M0 = 3, M1 = 2 and M2 = 8, respectively.

B.2 Canonical-correlation analyses

To find the dominant correlations between the the radar-derived and environmental parame-
ters, a canonical-correlation analysis (CCA) is applied [12]. Using the PCA decomposition,
the CCA identifies the linear combinations between components of the observation vector X =
(ηA,1, . . . , ηA,M1 , ηD,1, . . . , ηD,M2) that are the most correlated with linear combinations of com-
ponents of the environmental vector Y = (ηQ,1, . . . , ηQ,M0).

The CCA algorithm provides two matrices A = (ai,j) ∈ R(M1+M2)×M0,1 , B = (bi,j) ∈ RM0×M0,1

whereM0,1 = min (M0,M1 +M2), and a vector of positive numbersRCCA = (rCCA(1), . . . , ...rCCA(M0,1))
with rCCA(1) ≤ . . . ≤ rCCA(M0,1). The matrix A is the matrix of eigenvectors of the matrix
K
−1/2
XX KXYK

−1
Y YKY XK

−1/2
XX andB is the matrix of eigenvectors of the matrixK−1/2

Y Y KY XK
−1
XXKXYK

−1/2
Y Y ,

where KXX and KY Y are the covariance matrices ofX and Y , while KXY = Kt
Y X is the cross-

covariance betweenX and Y .
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As a result, i) the components of

{
uj =

M1+M2∑
i=1

ai,jXi

}
j=1,M0,1

are mutually statistically uncorre-

lated, and similarly for

{
vj =

M0∑
i=1

bi,jYi

}
j=1,M0,1

; and ii) for every component j = 1, . . . ,M0,1,

the statistical correlation between between uj and vj equals rCCA(j).

It is convenient to combine the results of the CCA and PCA by defining the projectors,

ψA,j(h) =

M1∑
k=1

ak,jϕA,k(h), (19a)

ψD,j(h) =

M1∑
k=1

aM1+k,jϕD,k(h), (19b)

ψQ,j(h) =

M0∑
k=1

bk,jϕQ,k(h). (19c)

With these new variables, the CCA variables uj, vj are obtained by applying the CCA projectors
to the initial fields as follows

vj(r, t) =

∫ ∞
0

QAIR(r, h, t)ψQ,j(h)dh, (20a)

and uj(r, t) = uA,j(r, t) + uD,j(r, t), (20b)

with uA,j(r, t) =

∫ ∞
5

ZAVG(r, h, t)ψA,j(h)dh, (20c)

uD,j(r, t) =

∫ ∞
5

∆tZ[dBZ](r, h, t)ψD,j(h)dh. (20d)
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